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FittGeGenerative models for Prediction
Task: Fitting a model for the given set of datapoints.

Types of models:

Discriminative:provides a model only for the target 
variable(s) conditional on the observed variables

Generative:a full probabilistic model of all variables.It is 
used in machine learning for either modeling data directly 
(i.e., modeling observations drawn from aprobability 
density function), or as an intermediate step to forming a 
conditional probability density function. 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Conditional_probability


➔ Can get estimate of the the uncertainty in the parameter estimates via the posterior distribution

➔ Useful when we only have limited data for learning each parameter

➔ Can get estimate of the the uncertainty in the model’s predictions

➔ Can handle missing and noisy data in a principled way

➔ Easy/more natural to do semi-supervised learning, active learning, etc.

➔ Can generate (synthesize) data by simulating from the data distribution

➔ Hyperparameters can be learned from data (need not be tuned)

➔ Simple models can be neatly combined to solve complex problems

Advantages of Probabilistic Models 



Gaussian Process Models

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data 
D = {X, y}

A Gaussian process defines a distribution over functions p(f) 
which can be used for Bayesian regression:

p(f|D) = p(f)p(D|f)
            p(D)



Gaussian Processes
Definition: A Gaussian process is a collection of random variables, any finite number of which have a 
consistent joint Gaussian distribution.(Rasmussen and Williams, 2006).

Similar to a Gaussian distribution, which is fully specified by a mean vector and a covariance matrix, a 

GP is fully specified by a mean function m
h
(·) and a covariance function.

We define a distribution over functions, p(h), where h is a function
mapping some input space X to 

h : X → ℜ.

Using the definition h= (h(x
1
), . . . , h(x

n
)) is a finite collection of GP hence has a joint Gaussian 

Distribution.



● Training Data : D  : {x
n
,y

n
}   x

n
 Є ℝd y

n
Є ℝ.

● Assume the labels to be noisy function of the inputs

y
i
=  h(x

i
)  +  ϵ

i 

ϵ
i
= N(0, ᵫ2)  : Gaussian measurement Noise

● Assume a gaussian prior over the function h p(h) = N (h|0, K)

● Thus the likelihood model  

p(y
n
|h

n
) = N (y

n
|h

n
, σ2)

● For N i.i.d. responses, the joint likelihood can be written as

p(Y|h) = N (Y|h, σ2)

● Use Bayes rule to get the posterior on h

p(h|y)      = p(h)p(y|h)

     p(y)

Gaussian Processes

Reference: http://www.gaussianprocess.org



Gaussian Processes

● Prior over the function h p(h) = N (h|0, K)
● The likelihood model  

p(y|h) = N (y|h, σ2)

● The marginal distribution of the training data responses y

p(y) = ∫p(y|h)p(h)dh =  N (y|0, K + σ2I
N

 ) =  N (y|0, C
N

 )

Reference: http://www.gaussianprocess.org



Gaussian Prior

● In the GP model, we have to specify the prior mean function and the prior covariance 
function.

● we consider a prior mean function m
h
 ≡ 0 and use the squared exponential 

(SE)covariance function with automatic relevance determination

k
SE

 (x
p 

, x
q
) := α2 exp(− ½ (x

p
 − x

q
 ) Λ−1 (x

p
 − x

q
)) x

p
, x

q
 �  �D ,

● Λ = diag([ 21 , . . . , 2 D ]) is a diagonal matrix of squared characteristic length-scales and α 
is the signal variance of the latent function h. These come under the hyperparameters of 
the function h.

● With the SE covariance function in the above equation, we assume that the latent 
function h is smooth and stationary.

Reference: http://www.gaussianprocess.org



Posterior
● After having observed function values y with y i = h(x i ) + ε i , i = 1, . . . , n, for a set of input 

vectors X, Bayes’ theorem yields

p(h|X,y,θ)      = p(h|θ)p(y|h,X,θ)

            p(y|X,θ)
● We assume that the observations y

i
 are conditionally independent given X.

● Therefore, the likelihood of h factors is:

p(y|h, X, θ) = 冂p(y
i
 |h(x

i
 ), θ) = 冂N (y

i
 | h(x

i
 ), σε 

2) = N  (y | h(X), σε
2I ).

● Given a Gaussian prior, hyperparameters and a gaussian likelihood, the posterior is also a GP 
with mean and Covariance function given by :

�
h
[h(x’)|X, y, θ] = k

h
(x’ ,  X)(k

h
(X, X) + σε

2I )−1 y ,

cov
h
 [h(x’ ), h(x )|X, y, θ] = k

h
(x , x ) − k

h
(x , X)(k

h
(X, X) +σε

2I )−1 k
h
 (X, x)

Reference: http://www.gaussianprocess.org



Evidence Maximization
● The flat prior on the hyper-parameters has computational advantages: It makes the posterior 

distribution over θ proportional to the marginal likelihood in equation, 

that is, p(θ|X, y) ∝ p(y|X, θ). 

● To find a vector of “good” hyper-parameters, we therefore maximize the marginal likelihood in 
equation with respect to the hyper-parameters as recommended by MacKay (1999).

● In particular, the log-marginal likelihood (log-evidence) is

log p(y|X, θ) = log∫p(y|h, X, θ) p(h|θ) dh= −  ½  y (K
 θ + σε

2 I )−1 y −  ½  log |K
 θ + σ

 ε 
2 I| − (D/2) log(2π) .

● Hence Maximizing the above equation we get the hyper-parameter vector(θ^) 

∈ arg max log p(y|X, θ)

Reference: http://www.gaussianprocess.org



Predicting Data

■ Infer t
N+1 

given t
N 

:

Simple, because conditional distribution is also a Gaussian

○  

○ Use incremental form of

 

Reference: http://www.gaussianprocess.org



■ We can rewrite this equation 
○ Use partitioned inverse equations to get 
from  
○  

○  

Predictive mean:
       And Covariance:

Predicting Data

Reference: http://www.gaussianprocess.org



GP regression
Gaussian observation noise: yn = fn + ϵn, where ϵn ∼ N (0, σ2)

sample data

y

xpredictive

y

marginal likelihood

p(y|X) = N (0, KN + σ2I)

predictive distribution
p(y∗|x∗, X, y) = N (µ∗, σ2∗)
µ∗ = K∗N(KN + σ2I)−1y
σ2∗ =K∗∗ −K∗N (KN +σ2I)−1KN ∗ +σ2

x

Gaussian Regression

Lecture slides of Zoubin Ghahramani, University of Cambridge, UK



Prediction using GPs with different K(x, x′)

A sample from the prior for each covariance function:
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Predicting using different K(x,x’)

Lecture slides of Zoubin Ghahramani, University of Cambridge, UK



Why Gaussian ?

● Marginals of Gaussians are Gaussian

● Conditionals of Gaussians are Gaussian

● Variety of covariance functions can be used

● Non- Parametric models



Samples from GPs with different K(x, x′)
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Varying Covariance Functions

Lecture slides of Zoubin Ghahramani, University of Cambridge, UK



Conclusions
 
● One of the recent application of Gaussian Process in Reinforcement Learning is being used in 

training the robots to make them autonomous with fewer trials.

● Gaussian are self conjugates which makes them strong tools for Bayesian Learning.

● Gaussian Processes are strong, flexible and simple  models and have wide range of 
applications and the years to come it shall be a strong tool to solving sturdy problems.



Thank you 


