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Project Aim

● Image Captioning aims to fill up the gap between visual and language interpretations 
which shall find wide applications among robots and humans as well.

● The notable work in this field was achieved by Dense Captioning which produces 
small captions for every region proposal.

●  The aim of this project was to semantically combine the incomplete captions to 
generate a set of sentences describing the image in detail.



Approach

● We replicated the results of ‘DenseCap: Fully Convolutional Localization 
Networks for Dense Captioning’ achieving results close enough as in the paper.

● We implemented the paper ‘Combining Geometric, Textual and Visual Features 
for Predicting Prepositions in Image Descriptions’  to predict prepositions 
between two connecting nouns.

● We refined the captions by reducing the region proposals and predicted the 
preposition joining the incomplete captions. 

● The captions and the prepositions were then passed through an encoder-decoder 
model trained on phrases and sentences to generate meaningful descriptions.



Dense Captioning
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Convolutional Network

● VGG-16 with 13 layers of 3x3 convolutions (stride 1 and pad 1) and 5 layers of 2x2 
max pooling (stride 2 no padding)

● Assume we start with an input image of shape  224 and depth is 3 (RGB)
● Initial 2 layers of convolutions and max pooling -

● No of filters are increased and max pooling reduces the width and height. Thus, 
the tensor of features is of shape CxW’xH’ where  C=512, H’=H/16=14, W’=W/16=14.

● Output Image – Set of uniformly sampled image locations can be seen.



VGG- 16 layer information 

Softmax Function

The  function is normally used  to 

highlight the largest values and suppress 

values which are significantly below the 

maximum value. 

 



Localization Layer

● It essentially identifies spatial regions of interest and smoothly extracts a fixed 
sized representation from each region.

● Input : Tensor of activations of size C x H’ x W’
● Internally selects B regions and returns three output tensors

○ Region Coordinates : Matrix Bx4 giving bounding box coordinates for each 
output region

○ Region Scores : Vector of length B with confidence score of each region.
○ Region Features :Tensor of shape BxCxXxY giving features for output regions

● Project each point in W’xH’ grid of input back into WxH image plane
● Consider k anchor boxes of different sizes centred at this projected point. For each 

k box, a confidence score and four coordinates are predicted.



Localisation Layer

● Computation:
Input feature Map → 3x3 conv with 256 filters → ReLU (Source of non-linearity) 
→1x1 with 5k filters →W’xH’x5k

● Box Regression: With coordinates, width and height of the center predicts scalars 
to normalise offsets and log space transforms to output region has center and 
shape.

● Box Sampling: Too many region proposals imposes the need to subsample them.
● Training time : A minibatch B=256 boxes with atmost B/2 positive regions and rest 

negatives.
● Test time : As sample B=300 of most confident proposals is used.
● Bilinear Interpolation-Bilinear sampling grid (B x X x Y x 2) is a linear function of 

the proposal coordinates



Recognition Network

● Features from each region are flattened into a vector.
● It is then passed through 2 Fully Connected Layers, each with ReLu (source of 

non-linearity) and regularized using Dropout.
● Each region produces a code of dimension D=4096 that compactly encodes its 

visual appearance.
● Codes for all positive regions is collected and put in matrix BxD which is passed to 

RNN
● The network also refines the confidence and position of each proposed region.



Language Model

● Training sequence of tokens s1,.., st is fed to 
RNN with + 2 word vectors x-1,x0... xt where 
x-1=CNN(I) & x0 is start token.

● RNN computes a sequence of hidden states 
ht  and output vector yt using formula 

ht,yt=f(ht-1,xt)
 

● Output vector size is V+1 where V is the 
token vocabulary and ‘1’ is  END token.



Loss Functions

● The model predicts positions and confidences of sampled regions twice: in the 
localization layer and again in the recognition network.

● Binary logistic losses are used for the confidences trained on sampled positive and 
negative regions. 

● For box regression, a smooth L1 loss is used. There is a term in the loss function- 
cross-entropy term at every time-step of the language model. 

● Normalization of all loss functions by the batch size and sequence length in the 
RNN is carried out. 



Combining Geometric, Textual and Image Features 

● The output obtained from DenseCap contained overlapping bounding boxes per 
image with brief captions. We refined the boxes obtained to reduce unnecessary 
overlapping.

●  The captions obtained per bounding box was then passed through Stanford 
Dependency Parser to obtain root as the landmark and trajectory.

● The landmark and trajectory were encoded using Word2Vec and the bounding 
boxes were used to obtain 11 features like percentage of overlap, Intersection over 
union and so on. 

● This 611 sized vector was used to train the Multilogistic regression which then 
predicted the preposition between the landmark and trajectory.



Example



Encoder- Decoder Model

● The encoder-decoder model is used for language translation. We use the model 
and train it with phrases and sentences to make the model learn english grammar.

● The model consists of LSTM to make use of the sequence information present in 
language.

● The predicted prepositions with the incomplete captions are then fed into the 
trained model to generate meaningful sentences.

● The captions are hence combined to produce generative captions.
● We have made a dataset with key words and prepositions extracted using stanford 

parser on the Wiki dump(after cleaning)  to train the model.  



Encoder- Decoder Model

● A neural machine translation system is a neural network that directly models the 
conditional probability  p(y|x) of translating a source sentence, x1, . . . , xn, to a 
target sentence, y1, . . . , ym.

● Basic form of NMT consists of two components:
○  an encoder which computes a representation for each source sentence 
○ a decoder which generates one target word at a time and hence decomposes 

the conditional probability as:



Results

Results of pre-trained model on Visual genome dataset



Results of self-trained model on Visual genome dataset

Results



Results after reducing the overlapping of boxes 

Results



Prediction of prepositions for every pair of captions for an image

Results



Results from encoder-decoder model

Results



● The mean Average Precision value achieved for the self trained model of DenseCap  
is 3.48 as against 5 reported in the paper.

● The prepositions were predicted with an accuracy of 67% (70% reported in paper)
● The present encoder decoder has been modified from a Machine Translation 

Model to sentence generation from phrases. The dataset used for now is not apt as 
the phrases do not contain prepositions. 

● We propose to use a better dataset with phrases and prepositions to generate 
sentences. 

Conclusion and Future Work
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